Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Frontiers in Marine Science ; 10, 2023.
Article in English | Web of Science | ID: covidwho-2324292

ABSTRACT

Disease surveillance of marine mammal populations is essential to understand the causes of strandings, identify potential threats to animal health, and to support development of conservation strategies. Here we report the first large multi-pathogen screening of prevalence for viruses, bacteria and parasites in a sample of 177 live, healthy, wild Caspian seals (Pusa caspica), captured and released during satellite telemetry studies 2007-2017. Employing molecular and serological assays we assess prevalence of pathogens known to be of significance for marine mammal health worldwide, and evaluate the results in relation to Caspian seal health and conservation. RT-PCR, and PCR assays find evidence for infection by Canine Distemper Virus (CDV), Phocine herpes virus, phocine adenovirus and Influenza A at prevalences of 5%, 6.4%, 21.7%, and 4% respectively. The genomes of CDV isolates collected in 2008 showed 99.59% identity with the 2000 Caspian seal CDV epizootic strain. A partial coding sequence for the Us2 gene from the Caspian seal herpes virus was identical to PhHV-1 isolate PB84, previously reported from a harbor seal (Phoca vitulina), while amplicon sequences for the adenovirus polymerase gene indicated a novel strain. ELISA assays detected exposure to Influenza A (55% of tested samples), adenovirus (25%), coronavirus (6%), CDV (8%), herpes virus (94%), Toxoplasma gondii (2.6%) and heartworm (1%). Hemagglutination inhibition (HI) tests detected exposure to Influenza B at a prevalence of 20%, and Leptospira microscopic agglutination tests detected suspected exposure to Leptospira serovars in 9% of tested samples. Overall, the risks, profile and prevalence of pathogens in Caspian seals appear comparable to other wild phocid seal populations. Our results suggest Caspian seals have exposure pathways to pathogens with epizootic potential or ability to cause significant morbidity, and that disease impacts could reduce the resilience of the population to other conservation threats. Caspian seals are listed as Endangered by the International Union for Conservation of Nature (IUCN), and we recommend that resources are invested to support further surveillance programs and to understand how anthropogenic pressures may influence future disease risks. A translated version of this is available in Russian and Kazakh in the Supplementary Material (Presentation 1 and Presentation 2)

2.
R Soc Open Sci ; 9(2): 211600, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-2191257

ABSTRACT

Anticipating cross-species transmission of zoonotic diseases requires an understanding of pathogen infection dynamics within natural reservoir hosts. Although bats might be a source of coronaviruses (CoVs) for humans, the drivers of infection dynamics in bat populations have received limited attention. We conducted a fine-scale 2-year longitudinal study of CoV infection dynamics in the largest colony of Reunion free-tailed bats (Mormopterus francoismoutoui), a tropical insectivorous species. Real-time PCR screening of 1080 fresh individual faeces samples collected during the two consecutive years revealed an extreme variation of the detection rate of bats shedding viruses over the birthing season (from 0% to 80%). Shedding pulses were repeatedly observed and occurred both during late pregnancy and within two months after parturition. An additional shedding pulse at the end of the second year suggests some inter-annual variations. We also detected viral RNA in bat guano up to three months after bats had left the cave. Our results highlight the importance of fine-scale longitudinal studies to capture the rapid change of bat CoV infection over months, and that CoV shedding pulses in bats may increase spillover risk.

3.
Viruses ; 14(12)2022 12 12.
Article in English | MEDLINE | ID: covidwho-2163616

ABSTRACT

There is mounting evidence of SARS-CoV-2 spillover from humans into many domestic, companion, and wild animal species. Research indicates that humans have infected white-tailed deer, and that deer-to-deer transmission has occurred, indicating that deer could be a wildlife reservoir and a source of novel SARS-CoV-2 variants. We examined the hypothesis that the Omicron variant is actively and asymptomatically infecting the free-ranging deer of New York City. Between December 2021 and February 2022, 155 deer on Staten Island, New York, were anesthetized and examined for gross abnormalities and illnesses. Paired nasopharyngeal swabs and blood samples were collected and analyzed for the presence of SARS-CoV-2 RNA and antibodies. Of 135 serum samples, 19 (14.1%) indicated SARS-CoV-2 exposure, and 11 reacted most strongly to the wild-type B.1 lineage. Of the 71 swabs, 8 were positive for SARS-CoV-2 RNA (4 Omicron and 4 Delta). Two of the animals had active infections and robust neutralizing antibodies, revealing evidence of reinfection or early seroconversion in deer. Variants of concern continue to circulate among and may reinfect US deer populations, and establish enzootic transmission cycles in the wild: this warrants a coordinated One Health response, to proactively surveil, identify, and curtail variants of concern before they can spill back into humans.


Subject(s)
COVID-19 , Deer , Humans , Animals , New York City/epidemiology , RNA, Viral/genetics , SARS-CoV-2/genetics , COVID-19/epidemiology , COVID-19/veterinary , Animals, Wild
4.
Biol Methods Protoc ; 7(1): bpac022, 2022.
Article in English | MEDLINE | ID: covidwho-2051304

ABSTRACT

Building realistically complex models of infectious disease transmission that are relevant for informing public health is conceptually challenging and requires knowledge of coding architecture that can implement key modeling conventions. For example, many of the models built to understand COVID-19 dynamics have included stochasticity, transmission dynamics that change throughout the epidemic due to changes in host behavior or public health interventions, and spatial structures that account for important spatio-temporal heterogeneities. Here we introduce an R package, SPARSEMODr, that allows users to simulate disease models that are stochastic and spatially explicit, including a model for COVID-19 that was useful in the early phases of the epidemic. SPARSEMOD stands for SPAtial Resolution-SEnsitive Models of Outbreak Dynamics, and our goal is to demonstrate particular conventions for rapidly simulating the dynamics of more complex, spatial models of infectious disease. In this report, we outline the features and workflows of our software package that allow for user-customized simulations. We believe the example models provided in our package will be useful in educational settings, as the coding conventions are adaptable, and will help new modelers to better understand important assumptions that were built into sophisticated COVID-19 models.

5.
Frontiers in Ecology and Evolution ; 10, 2022.
Article in English | Scopus | ID: covidwho-1963434

ABSTRACT

In nature, the interaction between pathogens and their hosts is only one of a handful of interaction relationships between species, including parasitism, predation, competition, symbiosis, commensalism, and among others. From a non-anthropocentric view, parasitism has relatively fewer essential differences from the other relationships;but from an anthropocentric view, parasitism and predation against humans and their well-beings and belongings are frequently related to heinous diseases. Specifically, treating (managing) diseases of humans, crops and forests, pets, livestock, and wildlife constitute the so-termed medical enterprises (sciences and technologies) humans endeavor in biomedicine and clinical medicine, veterinary, plant protection, and wildlife conservation. In recent years, the significance of ecological science to medicines has received rising attentions, and the emergence and pandemic of COVID-19 appear accelerating the trend. The facts that diseases are simply one of the fundamental ecological relationships in nature, and the study of the relationships between species and their environment is a core mission of ecology highlight the critical importance of ecological science. Nevertheless, current studies on the ecology of medical enterprises are highly fragmented. Here, we (i) conceptually overview the fields of disease ecology of wildlife, cancer ecology and evolution, medical ecology of human microbiome-associated diseases and infectious diseases, and integrated pest management of crops and forests, across major medical enterprises. (ii) Explore the necessity and feasibility for a unified medical ecology that spans biomedicine, clinical medicine, veterinary, crop (forest and wildlife) protection, and biodiversity conservation. (iii) Suggest that a unified medical ecology of human diseases is both necessary and feasible, but laissez-faire terminologies in other human medical enterprises may be preferred. (iv) Suggest that the evo-eco paradigm for cancer research can play a similar role of evo-devo in evolutionary developmental biology. (v) Summarized 40 key ecological principles/theories in current disease-, cancer-, and medical-ecology literatures. (vi) Identified key cross-disciplinary discovery fields for medical/disease ecology in coming decade including bioinformatics and computational ecology, single cell ecology, theoretical ecology, complexity science, and the integrated studies of ecology and evolution. Finally, deep understanding of medical ecology is of obvious importance for the safety of human beings and perhaps for all living things on the planet. Copyright © 2022 Ma and Zhang.

6.
International Review of Environmental History ; 8(1):121-130, 2022.
Article in English | Scopus | ID: covidwho-1789836

ABSTRACT

Global pandemic preparedness initiatives rely on a vision of viral discovery-to rapidly detect and respond to emerging viruses, or even predict their future emergence. But despite the fact that the emergence of a coronavirus was accurately predicted, and the new virus was also rapidly detected, viral discovery failed to prevent or contain the Covid-19 pandemic. In this paper, I trace the history of the viral discovery paradigm in order to illuminate its 'agnotology'-that is, what is ignored in the production of virological knowledge. I argue that this ignorance is primarily a question of scale: the massive expansion in molecular knowledge of viruses has not been matched by knowledge about the ecology of virus emergence. © 2022 ANU Press. All rights reserved.

7.
8th IEEE International Conference on Behavioural and Social Computing, BESC 2021 ; 2021.
Article in English | Scopus | ID: covidwho-1685059

ABSTRACT

The aim of this paper was to further examine the parasite disease ecology of collectivism from longitudinal perspective. We used articles published in People's Dally of China between 2019 and 2020l and divided them into three stages, Le., before, during and after SARS-CoV-2..It was found that callecttvtsm was higher and Indtvtduallsm was lower during SARS-CoV-2 stage compared to before and during SARS-CoV-2 stages. These findings deepen the parasite-stress theory of calleetivism from longitudinal perspective. The theoretical contribution toward ecological antecedents of collectivism and computational social psychology were also discussed. © 2021 IEEE

8.
Perspectives on Science and Christian Faith ; 73(4):202-207, 2021.
Article in English | Web of Science | ID: covidwho-1558198

ABSTRACT

Humans are called to rule over creation (Gen. 1:27) but not in an irresponsible way. We should treat creation, as we read in Genesis 2:15, by caring for it. That was the requirement from God for humanity. We can define creation care as nature conservation. However, we should acknowledge that we have been neglecting our role as stewards of creation. There is deforestation, species extinction, pollution, and other human activities that cause suffering not only for plants and animals, but also for people. Mismanagement of nature can cause spillover of disease. In wildlife, agents of disease are common, but they are somehow under control when there are many hosts. Scientists recognize today that pathogens and parasites have a role in the structure of ecosystems. By causing deforestation and removing animals from their natural habitats, we are increasing the possibility of zoonotic diseases that may cause epidemics and pandemics. This article will relate the origin of viral diseases, such as COVID-19, to a failure of proper nature management and provide examples of viral diseases resulting from such mismanagement.

9.
Ambio ; 51(4): 1014-1021, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1316343

ABSTRACT

Around the globe, human behavior and ecosystem health have been extensively and sometimes severely affected by the unprecedented COVID-19 pandemic. Most efforts to study these complex and heterogenous effects to date have focused on public health and economics. Some studies have evaluated the pandemic's influences on the environment, but often on a single aspect such as air or water pollution. The related research opportunities are relatively rare, and the approaches are unique in multiple aspects and mostly retrospective. Here, we focus on the diverse research opportunities in disease ecology and ecosystem sustainability related to the (intermittent) lockdowns that drastically reduced human activities. We discuss several key knowledge gaps and questions to address amid the ongoing pandemic. In principle, the common knowledge accumulated from invasion biology could also be effectively applied to COVID-19, and the findings could offer much-needed information for future pandemic prevention and management.


Subject(s)
COVID-19 , Pandemics , Communicable Disease Control , Ecosystem , Humans , Retrospective Studies , SARS-CoV-2
10.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Article in English | MEDLINE | ID: covidwho-1171893

ABSTRACT

The death toll and economic loss resulting from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic are stark reminders that we are vulnerable to zoonotic viral threats. Strategies are needed to identify and characterize animal viruses that pose the greatest risk of spillover and spread in humans and inform public health interventions. Using expert opinion and scientific evidence, we identified host, viral, and environmental risk factors contributing to zoonotic virus spillover and spread in humans. We then developed a risk ranking framework and interactive web tool, SpillOver, that estimates a risk score for wildlife-origin viruses, creating a comparative risk assessment of viruses with uncharacterized zoonotic spillover potential alongside those already known to be zoonotic. Using data from testing 509,721 samples from 74,635 animals as part of a virus discovery project and public records of virus detections around the world, we ranked the spillover potential of 887 wildlife viruses. Validating the risk assessment, the top 12 were known zoonotic viruses, including SARS-CoV-2. Several newly detected wildlife viruses ranked higher than known zoonotic viruses. Using a scientifically informed process, we capitalized on the recent wealth of virus discovery data to systematically identify and prioritize targets for investigation. The publicly accessible SpillOver platform can be used by policy makers and health scientists to inform research and public health interventions for prevention and rapid control of disease outbreaks. SpillOver is a living, interactive database that can be refined over time to continue to improve the quality and public availability of information on viral threats to human health.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Pandemics , SARS-CoV-2 , Zoonoses , Animals , COVID-19/epidemiology , COVID-19/transmission , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/transmission , Humans , Zoonoses/epidemiology , Zoonoses/transmission
11.
Trends Microbiol ; 29(7): 593-605, 2021 07.
Article in English | MEDLINE | ID: covidwho-1157752

ABSTRACT

Ecological and evolutionary processes govern the fitness, propagation, and interactions of organisms through space and time, and viruses are no exception. While coronavirus disease 2019 (COVID-19) research has primarily emphasized virological, clinical, and epidemiological perspectives, crucial aspects of the pandemic are fundamentally ecological or evolutionary. Here, we highlight five conceptual domains of ecology and evolution - invasion, consumer-resource interactions, spatial ecology, diversity, and adaptation - that illuminate (sometimes unexpectedly) the emergence and spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We describe the applications of these concepts across levels of biological organization and spatial scales, including within individual hosts, host populations, and multispecies communities. Together, these perspectives illustrate the integrative power of ecological and evolutionary ideas and highlight the benefits of interdisciplinary thinking for understanding emerging viruses.


Subject(s)
COVID-19/virology , Disease Reservoirs/veterinary , Ecology , Evolution, Molecular , SARS-CoV-2/genetics , Animals , COVID-19/epidemiology , Chiroptera/virology , Disease Reservoirs/virology , Humans , Zoonoses/virology
12.
Parasitology ; 148(3): 274-288, 2021 03.
Article in English | MEDLINE | ID: covidwho-1087391

ABSTRACT

An animal's social behaviour both influences and changes in response to its parasites. Here we consider these bidirectional links between host social behaviours and parasite infection, both those that occur from ecological vs evolutionary processes. First, we review how social behaviours of individuals and groups influence ecological patterns of parasite transmission. We then discuss how parasite infection, in turn, can alter host social interactions by changing the behaviour of both infected and uninfected individuals. Together, these ecological feedbacks between social behaviour and parasite infection can result in important epidemiological consequences. Next, we consider the ways in which host social behaviours evolve in response to parasites, highlighting constraints that arise from the need for hosts to maintain benefits of sociality while minimizing fitness costs of parasites. Finally, we consider how host social behaviours shape the population genetic structure of parasites and the evolution of key parasite traits, such as virulence. Overall, these bidirectional relationships between host social behaviours and parasites are an important yet often underappreciated component of population-level disease dynamics and host-parasite coevolution.


Subject(s)
Host-Parasite Interactions , Parasites/physiology , Parasitic Diseases, Animal/epidemiology , Social Behavior , Animals , Prevalence
13.
J Med Internet Res ; 23(1): e24591, 2021 01 22.
Article in English | MEDLINE | ID: covidwho-1042067

ABSTRACT

BACKGROUND: Eliminating disparities in the burden of COVID-19 requires equitable access to control measures across socio-economic groups. Limited research on socio-economic differences in mobility hampers our ability to understand whether inequalities in social distancing are occurring during the SARS-CoV-2 pandemic. OBJECTIVE: We aimed to assess how mobility patterns have varied across the United States during the COVID-19 pandemic and to identify associations with socioeconomic factors of populations. METHODS: We used anonymized mobility data from tens of millions of devices to measure the speed and depth of social distancing at the county level in the United States between February and May 2020, the period during which social distancing was widespread in this country. Using linear mixed models, we assessed the associations between social distancing and socioeconomic variables, including the proportion of people in the population below the poverty level, the proportion of Black people, the proportion of essential workers, and the population density. RESULTS: We found that the speed, depth, and duration of social distancing in the United States are heterogeneous. We particularly show that social distancing is slower and less intense in counties with higher proportions of people below the poverty level and essential workers; in contrast, we show that social distancing is intensely adopted in counties with higher population densities and larger Black populations. CONCLUSIONS: Socioeconomic inequalities appear to be associated with the levels of adoption of social distancing, potentially resulting in wide-ranging differences in the impact of the COVID-19 pandemic in communities across the United States. These inequalities are likely to amplify existing health disparities and must be addressed to ensure the success of ongoing pandemic mitigation efforts.


Subject(s)
COVID-19/economics , COVID-19/prevention & control , Physical Distancing , Socioeconomic Factors , COVID-19/epidemiology , Female , Humans , Male , Pandemics , Population Density , Poverty/statistics & numerical data , Salaries and Fringe Benefits/statistics & numerical data , United States/epidemiology
14.
One Health ; 10: 100170, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-798028

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic threatens global health thereby causing unprecedented social, economic, and political disruptions. One way to prevent such a pandemic is through interventions at the human-animal-environment interface by using an integrated One Health (OH) approach. This systematic literature review documented the three coronavirus outbreaks, i.e. SARS, MERS, COVID-19, to evaluate the evolution of the OH approach, including the identification of key OH actions taken for prevention, response, and control. The OH understandings identified were categorized into three distinct patterns: institutional coordination and collaboration, OH in action/implementation, and extended OH (i.e. a clear involvement of the environmental domain). Across all studies, OH was most often framed as OH in action/implementation and least often in its extended meaning. Utilizing OH as institutional coordination and collaboration and the extended OH both increased over time. OH actions were classified into twelve sub-groups and further categorized as classical OH actions (i.e. at the human-animal interface), classical OH actions with outcomes to the environment, and extended OH actions. The majority of studies focused on human-animal interaction, giving less attention to the natural and built environment. Different understandings of the OH approach in practice and several practical limitations might hinder current efforts to achieve the operationalization of OH by combining institutional coordination and collaboration with specific OH actions. The actions identified here are a valuable starting point for evaluating the stage of OH development in different settings. This study showed that by moving beyond the classical OH approach and its actions towards a more extended understanding, OH can unfold its entire capacity thereby improving preparedness and mitigating the impacts of the next outbreak.

15.
Cell ; 182(5): 1077-1092, 2020 09 03.
Article in English | MEDLINE | ID: covidwho-713885

ABSTRACT

Infectious diseases prevalent in humans and animals are caused by pathogens that once emerged from other animal hosts. In addition to these established infections, new infectious diseases periodically emerge. In extreme cases they may cause pandemics such as COVID-19; in other cases, dead-end infections or smaller epidemics result. Established diseases may also re-emerge, for example by extending geographically or by becoming more transmissible or more pathogenic. Disease emergence reflects dynamic balances and imbalances, within complex globally distributed ecosystems comprising humans, animals, pathogens, and the environment. Understanding these variables is a necessary step in controlling future devastating disease emergences.


Subject(s)
Communicable Diseases, Emerging/epidemiology , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , COVID-19 , Communicable Diseases, Emerging/prevention & control , Communicable Diseases, Emerging/transmission , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Demography , Environment , Host-Pathogen Interactions , Humans , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission
SELECTION OF CITATIONS
SEARCH DETAIL